
OAuth 2.0 Authorization Code grant type — Fully visualized
Icons made by Freepik from www.flaticon.com

Copyright © 2023 Phil BoutrosVersion 1.3

OAuth 2.0 Authorization Code grant type
Three-legged OAuth fully visualized

◂ local cloud ▸

User
Resource Owner

Your App
Client

Browser
User Agent

Your Service
Client

Provider
Authorization Server

Provider
Resource Server

GET OAuth2 endpoints

Endpoint information

Optionally, get OAuth endpoints from OpenID Connect
Providers that support OpenID Connect must support a well-known
discovery endpoint that returns the latest version of their OAuth2
and OpenID endpoints. If your Provider supports this it’s recom-
mended you get the most current authorization, token, and other
endpoints this way instead of hard coding them.

Example
HTTP Request
GET https://accounts.google.com/.well-known/openid-configuration
HTTP Response
200 OK
{

"issuer": "https://accounts.google.com",
"authorization_endpoint": "https://accounts.google.com/o/oauth2/v2/auth",
"device_authorization_endpoint": "https://oauth2.googleapis.com/device/code",
"token_endpoint": "https://oauth2.googleapis.com/token",
"userinfo_endpoint": "https://openidconnect.googleapis.com/v1/userinfo"
and so on...

1

Call your API to initiate sign in

Redirect to sign in page

GET sign in page

Send the Provider an authorization request
The sequence shown is an opinionated version of how to accomplish
this. By calling a known API endpoint in your service to generate the
authorization URL and then redirecting the browser there, you keep
all responsibility for OAuth URL construction in one place and
protect the code that generates the state value. Other options
include attaching the URL directly to a sign-in button, generating it
using JavaScript, etc.
The URL itself uses the authorization_endpoint from step ❶
along with various parameters, some of which are standard, and
some of which vary depending on the Provider. See your Provider’s
documentation for construction of this URL. A few common, import-
ant ones are discussed below:
response_type must be code to indicate the Authorization Code
grant type
client_id must be the public client id for your App that you
received from the Provider, likely through some web-based develop-
er console.
state should be used and be non-guessable to prevent CSRF
attacks.
scope should be used to describe only the resources your App
needs thereby allowing the Provider to present this information to
the user for authorization, as well as limiting the blast radius of a
stolen token.

Example
HTTP Request
GET https://www.myapp.com/googlelogin
HTTP Response
302 Found
Location: https://accounts.google.com/o/oauth2/v2/auth?

response_type=code&
client_id=your application’s client id&
redirect_uri=https://www.myapp.com/redirect&
scope=openid https://www.googleapis.com/auth/calendar.readonly&
state=90473285472395729&
access_type=o�line&
prompt=consent

HTTP Request
GET same as Location above

2

User Your App Browser Your Service Authorization Server Resource Server

User signs in and authorizes your App
This process is opaque to your App and usually includes things like
sign-in, two-factor authentication, authorization, etc. specific to the
Provider.
Note that the user and browser participate in this interaction but
your App does not.

3

Sign-in page

User sign-in, authorization, etc.

Final click

User Your App Browser Your Service Authorization Server Resource Server

Redirect to your “Redirect URI”

GET your “Redirect URI”

POST to get tokens

Access token, etc.

Provider sends a code which you turn into token(s)
Once the user completes the Provider's authorization process, the
Provider will redirect the browser back to your service using the
“Redirect URI” you provided in step ❷ above.
The “Redirect URI” will include at least code and state query
parameters. The state parameter should be verified to be the
value you passed in step ❷ to prevent CSRF attacks. The code
parameter should be used in a POST along with the private client
secret for your App to retrieve an access token and other tokens.
Once you have a valid access token it may be used to directly call the
Provider's API (Resource Server). The additional tokens received are
dependent on the scope parameter in the authorization request and
possibly other factors.
The enhanced security of this �ow comes from the fact that your
service and the Provider have a private interaction (the third leg) not
moderated by the browser. Neither your App’s client secret nor the
resulting tokens are exposed to the browser or any other part of the
user’s local system thereby preventing even a fully compromised
system from obtaining them.
Read your Provider’s documentation carefully. There are several valid
methods of constructing the POST and each Provider has some
nuances. Query parameter-based methods should be avoided if
possible (although I use them in the example) to prevent logging of
your App’s client secret.

Example
HTTP Response
302 Found
Location: https://www.myapp.com/redirect?

code=some value&
state=90473285472395729

HTTP Request (from browser)
GET same as Location above
HTTP Request (from your service)
POST https://oauth2.googleapis.com/token?

grant_type=authorization_code&
client_id=your application’s client id&
client_secret=your application’s client secret&
code=code from above&
redirect_uri=https://www.myapp.com/redirect

HTTP Response
200 OK
{

"access_token" : "eyJhbG...",
"refresh_token" : "OiJSUzI1...",
"id_token" : "NiIsIng1dS...",
"token_type" : "bearer",
"expires_in" : 3599,
"scope" : "openid https://www.googleapis.com/auth/calendar.readonly"
and so on...

4

User Your App Browser Your Service Authorization Server Resource Server

Call API to get data

Data

Use the tokens to get data from the Provider
Once your service has a valid access token you may use it to call the
Provider APIs (Resource Server) immediately or in the future. The
access token may be refreshed using a refresh token and user infor-
mation may be obtained using an id token. Other tokens may be
available for other tasks.
Note that the sequence diagram shows this happening immediately
but it could happen at any point in the future as long as the access
token is valid.

Example
HTTP Request
GET https://www.googleapis.com/calendar/v3/users/me/calendarList

Authorization: Bearer access_token retrieved above
HTTP Response
200 OK
{

 "kind": "calendar#calendarList",
 "etag": "\"p32079o6aq36820o\"",
 "nextSyncToken": "CICk4MrQxoEDEhZwaGlsQpJv8XRyb3NmYW1pbHkuY29t",
 "items": [
 {

 "kind": "calendar#calendarListEntry",
 "etag": "\"16353460270135000\"",
 "id": "pqargb3t6kul4i9shs@group.calendar.google.com",
 "summary": "Phil’s Calendar”,
 "timeZone": "America/Chicago",
and so on...

5

User Your App Browser Your Service Authorization Server Resource Server

The user owns
some resources

and is giving your
application

authorization to
access those

resources

Your application’s
browser-based,

desktop, or mobile
frontend

The browser your
application is

running in or an
embedded/exter-

nal browser for
desktop or mobile

apps

Some entity like Google, Apple, Facebook, etc. that
holds resources for the user (Phil’s calendar data in
the examples) and provides both the Authorization

Server and the Resource Server

Your application’s
secure backend
that supports at
least HTTP/REST

